
Fractional variational calculus in terms of Riesz fractional derivatives

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2007 J. Phys. A: Math. Theor. 40 6287

(http://iopscience.iop.org/1751-8121/40/24/003)

Download details:

IP Address: 171.66.16.109

The article was downloaded on 03/06/2010 at 05:14

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/40/24
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 40 (2007) 6287–6303 doi:10.1088/1751-8113/40/24/003

Fractional variational calculus in terms of Riesz
fractional derivatives

O P Agrawal

Department Mechanical Engineering, Southern Illinois University, Carbondale,
IL 62901, USA

E-mail: om@engr.siu.edu

Received 5 March 2007, in final form 1 May 2007
Published 30 May 2007
Online at stacks.iop.org/JPhysA/40/6287

Abstract
This paper presents extensions of traditional calculus of variations for systems
containing Riesz fractional derivatives (RFDs). Specifically, we present
generalized Euler–Lagrange equations and the transversality conditions for
fractional variational problems (FVPs) defined in terms of RFDs. We consider
two problems, a simple FVP and an FVP of Lagrange. Results of the first
problem are extended to problems containing multiple fractional derivatives,
functions and parameters, and to unspecified boundary conditions. For the
second problem, we present Lagrange-type multiplier rules. For both problems,
we develop the Euler–Lagrange-type necessary conditions which must be
satisfied for the given functional to be extremum. Problems are considered
to demonstrate applications of the formulations. Explicitly, we introduce
fractional momenta, fractional Hamiltonian, fractional Hamilton equations of
motion, fractional field theory and fractional optimal control. The formulations
presented and the resulting equations are similar to the formulations for FVPs
given in Agrawal (2002 J. Math. Anal. Appl. 272 368, 2006 J. Phys. A: Math.
Gen. 39 10375) and to those that appear in the field of classical calculus of
variations. These formulations are simple and can be extended to other
problems in the field of fractional calculus of variations.

PACS numbers: 45.10.Db, 02.30.Xx

1. Introduction

This paper deals with fractional derivatives in general and fractional calculus of variations
(FCV) in particular. Fractional derivatives (or fractional calculus) have recently played a very
important role in various fields such as mechanics, electricity, chemistry, biology, economics,
control theory, robotics, image and signal processing, and anomalous transport and diffusion
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[3–10]. This list is by no means complete, and many more applications could be found in
above references and the citations therein.

In recent years, there has been a growing interest in the area of FCV. Riewe’s two
papers [11, 12] are the starting point of this field. In his papers, Riewe argued that
the second-order derivative terms in Euler–Lagrange equations come from quadratic first
derivative terms in Lagrangians, and therefore the first-order derivative terms should come
from quadratic half-order derivative terms in Lagrangians. Subsequently, he used fractional
calculus to develope Lagrangian, Hamiltonian and other concepts of classical mechanics for
nonconservative systems. Agrawal [13] presented a heuristic approach to obtain differential
equations of fractionally damped systems. Later, Agrawal [1] presented generalized
Euler–Lagrange equations (GELEs) for unconstrained and constrained fractional variational
problems (FVPs). Klimek presented a fractional sequential mechanics model with symmetric
fractional derivatives [14] and stationary conservation laws for fractional differential equations
with variable coefficients [15]. Dreisigmeyer and Young [16] presented nonconservative
Lagrangian mechanics using a generalized function approach. In [17], the authors show
that obtaining differential equations for a nonconservative system using fractional variational
calculus may not be possible. Cresson [18] presented fractional embedding of differential
operators and Lagrangian systems where he shows that the embedding procedure is compatible
with FCV. He also develops several formulations for fractional mechanics.

The papers cited above focus on obtaining Euler–Lagrange equations for FVPs, but they do
not consider initial or terminal conditions. In [2, 19], Agrawal argued that integer variational
calculus provides not only the differential equations for the problems, but it also provides
the transversality conditions which give the natural boundary conditions (NBCs). Therefore,
FCV should also do the same. Subsequently, he developed the GELEs and the transversality
conditions for FVPs. In these papers, the problems were formulated in terms of the Riemann–
Liouville and the Caputo fractional derivatives. It was shown that both derivatives may appear
in the resulting GELEs even when a problem is formulated in terms of only one of them.

The fractional Euler–Lagrange equation has recently been used by Baleanu and
coworker to model fractional Lagrangian and Hamiltonian formulations with linear velocities
[20, 21], Hamiltonian equations for FVPs [22–24] and fractional Hamiltonian analysis of
higher order derivative systems [23]. Agrawal [26–28] and Agrawal and Baleanu [29]
presented formulations for deterministic and stochastic analyses of fractional optimal control
problems. Tarasov and Zaslavsky [30] have used variational Euler–Lagrange equations to
derive fractional generalization of the Ginzburg–Landau equation for fractal media. In
[31], the authors use fractional variational principles to develop fractional generalization
of nonholonomic constraints. Stanislavsky [32] presented analysis of a simple fractional and
a coupled fractional oscillators, and a generalization of classical mechanics with fractional
derivatives. In [33], a variational principle for a more general set of equations is formulated and
the existence and uniqueness of a second-order differential equation containing the fractional
order viscoelastic model has been provided.

The above list clearly suggests that interest in the fractional variational calculus is growing;
however, much remains to be done. For example, FCV began with a desire to find a Lagrangian
that could provide viscous damping force. In spite of several efforts, a satisfactory Lagrangian
that could accomplish the above has not yet been (to the author’s knowledge) presented. Our
conjecture is that answers to this and other unsolved problems in fractional mechanics, or
for that matter in many other fields, lie in an FCV developed using fractional derivatives
which may or may not have been defined at the present time. With this in mind, our effort
to develop FCV and its applications in various fields using various fractional derivatives must
continue.
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In this paper, we develop the GELEs and the transversality conditions for FVPs defined in
terms of Riesz fractional derivatives (RFDs). Thus, it extends the FCV available to researchers
so far. Definition of a Riesz fractional potential is used to define an RFD. Two definitions are
possible for an RFD, one analogous to the Riemann–Liouville fractional derivative (RLFD) and
the other analogous to the Caputo fractional derivative (CFD). Both definitions are presented.
We consider two problems, a simple FVP and an FVP of Lagrange. Results of the first problem
are extended to problems containing multiple fractional derivatives, functions and parameters,
and to unspecified boundary conditions. For the second problem, we present a Lagrange-type
multiplier rules. Problems are considered to demonstrate applications of the formulations.
We introduce fractional momenta, fractional Hamiltonian, fractional Hamilton equations of
motion, fractional field theory and fractional optimal control. The formulations presented and
the resulting equations are similar to the formulations for FVPs given in [1, 2] and to those
that appear in the field of classical calculus of variations. These formulations are simple and
can be extended to other problems in the field of FCV.

We begin with some definitions of fractional integrals and derivatives, and their basic
properties.

2. Fractional integrals and derivatives and their properties

Several definitions of a fractional derivative have been proposed. These definitions include
the Riemann–Liouville, the Grunwald–Letnikov, the Weyl, the Caputo, the Marchaud, the
Riesz, and the Miller and Ross fractional derivatives (see [1] and the references therein). In
this section, we present definitions of the Riesz fractional integral (potential) and derivatives,
and their properties. We also define the Riemann–Liouville and Caputo derivatives as they are
linked to Riesz fractional derivatives.

We begin with the left and the right Riemann–Liouville fractional integrals of order α > 0
of a function x(t) which are defined as [4]

aI
α
t x(t) = 1

�(α)

∫ t

a

(t − τ)α−1x(τ) dτ, α > 0 (1)

and

t I
α
b x(t) = 1

�(α)

∫ b

t

(τ − t)α−1x(τ) dτ, α > 0, (2)

where �(∗) represents the Gamma function. We now define the Riesz potential as

R
a Iα

b x(t) = 1

2�(α)

∫ b

a

|t − τ |α−1x(τ) dτ, α > 0. (3)

Note that the definitions of R
a Iα

b x(t) in [34] include an additional factor of 1/ cos(πα/2) and
in [4] a factor of 2. The rationale for considering the above definition will be given shortly.
Strictly speaking, the limits in Riesz potential go from −∞ to +∞. Therefore, equation (3)
is valid for only a special class of functions or it can be considered as a Riesz-type potential.
Nevertheless, we call it Riesz potential and also the Riesz fractional integral of order α. From
equations (1)–(3), it follows that

R
a Iα

b x(t) = 1
2

(
aI

α
t x(t) + t I

α
b x(t)

)
. (4)

Operator R
a Iα

b satisfies the following identity:

QR
a Iα

b x(t) = R
a Iα

b Qx(t), (5)
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where Q is the ‘reflection operator’ such that (Qx)(t) = x(a + b − t). This follows from
equation (4) and the identities QaI

α
t = t I

α
b Q and QtI

α
b = aI

α
t Q given in [34]. Thus, the

operators Q and R
a Iα

b commute.
Using equations (1) and (2), the left and the right Riemann–Liouville and Caputo

derivatives are defined as the left Riemann–Liouville fractional derivative (RLFD)

aD
α
t x(t) = 1

�(n − α)

(
d

dt

)n ∫ t

a

(t − τ)n−α−1x(τ) dτ = Dn
aI

n−α
t x(t), (6)

the right Riemann–Liouville fractional derivative (RLFD)

tD
α
b x(t) = 1

�(n − α)

(
− d

dt

)n ∫ b

t

(τ − t)n−α−1x(τ) dτ = (−D)nt I
n−α
b x(t), (7)

the left Caputo fractional derivative (CFD)

C
a Dα

t x(t) = 1

�(n − α)

∫ t

a

(t − τ)n−α−1

(
d

dτ

)n

x(τ ) dτ = aI
n−α
t Dnx(t), (8)

the right Caputo fractional derivative (CFD)

C
t Dα

b x(t) = 1

�(n − α)

∫ b

t

(τ − t)n−α−1

(
− d

dτ

)n

x(τ ) dτ = t I
n−α
b (−D)nx(t), (9)

where D is the traditional derivative operator and α is the order of the derivative such that
n − 1 < α < n. When α is an integer, the usual definition of a derivative is used. Note that
for α = 1, the left derivative is the negative of the right derivative.

From equations (6) and (9), it is clear that both the Riemann–Liouville and the Caputo
derivatives contain fractional integration of order n − α and traditional derivative of order
n. However, in the case of Riemann–Liouville, the integration is performed first and the
differentiation is performed next, whereas in the case of Caputo derivative, the order of
differentiation and integration is reversed. Following the above analogy, we define the
fractional Riesz and fractional Riesz–Caputo derivatives as [4] the Riesz fractional derivative
(RFD)

R
a Dα

t x(t) = 1

�(n − α)

(
d

dt

)n ∫ b

a

|t − τ |n−α−1x(τ) dτ = DnR
a In−α

t x(t), (10)

the Riesz–Caputo fractional derivative (RCFD)

RC
a Dα

t x(t) = 1

�(n − α)

∫ b

a

|t − τ |n−α−1

(
d

dτ

)n

x(τ ) dτ = R
a In−α

t Dnx(t). (11)

Equation (11) essentially represents the Riesz Riemann–Liouville fractional derivative.
However, in the discussion below, we simply call it the Riesz fractional derivative.

Using equations (4) and (6)–(11), it follows that
R
a Dα

t x(t) = 1
2

(
aD

α
t x(t) + (−1)n tD

α
b x(t)

)
(12)

and
RC
a Dα

t x(t) = 1
2

(
C
a Dα

t x(t) + (−1)n C
t Dα

b x(t)
)
. (13)

In particular, for 0 < α < 1, we have
R
a Dα

t x(t) = 1
2

(
aD

α
t x(t) − tD

α
b x(t)

)
(14)

and
RC
a Dα

t x(t) = 1
2

(
C
a Dα

t x(t) − C
t Dα

b x(t)
)
. (15)
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As pointed out earlier, when α is 1, the right derivative is the negative of the left derivative.
Thus, for integer α, the Riesz derivatives defined above agree with traditional definitions of a
derivative. This is the rationale for using equation (3) as the definition for the Riesz fractional
integral.

In the discussion to follow, we will also need formulae for fractional integration by parts.
These formulae are given as

∫ b

a

[�] C
a Dα

t η dt =
∫ b

a

η tD
α
b [�] dt +

n−1∑
j=0

tD
α+j−n

b [�]Dn−1−j η(t)|ba, (16)

∫ b

a

[�] C
t Dα

b η dt =
∫ b

a

η aD
α
t [�] dt +

n−1∑
j=0

(−1)n+j
aD

α+j−n
t [�]Dn−1−j η(t)|ba, (17)

∫ b

a

[�] aD
α
t η dt =

∫ b

a

η C
t Dα

b [�] dt −
n−1∑
j=0

(−1)n+j
aD

α+j−n
t η(t)Dn−1−j [�]|ba, (18)

∫ b

a

[�] tD
α
b η dt =

∫ b

a

η C
a Dα

t [�] dt −
n−1∑
j=0

tD
α+j−n

b [�]Dn−1−j η(t)|ba, (19)

∫ b

a

[�] RC
a Dα

b η dt = (−1)n
∫ b

a

η R
a Dα

b [�] dt

+
n−1∑
j=0

(−1)j R
a D

α+j−n

b [�]Dn−1−j η(t)|ba, (20)

∫ b

a

[�] R
a Dα

b η dt = (−1)n
∫ b

a

η RC
a Dα

b [�] dt

+
n−1∑
j=0

(−1)n+j R
a D

α+j−n

b η(t)Dn−1−j [�]|ba. (21)

Equations (16) and (17) could be found in [19]. On the other hand, they could also be derived
using equations (7) and (9), the identity (see [34])∫ b

a

f aI
α
t g dt =

∫ b

a

g t I
α
b f dt,

and performing integration by parts. Equations (18) and (19) follow from equations (16) and
(17) by interchanging [∗] and η, and rearranging the terms. Finally, equations (20) and (21)
follow from equations (12), (13) and (16)–(19). Note that a negative exponent in R

a Dα
b and

RC
a Dα

b represents a Riesz fractional integral.
The above equations play an important role in deriving the GELEs for fractional variational

problems defined in terms of RFDs and RCFDs. The procedures to derive formulations and
the resulting equations for problems defined in terms of RFDs and RCFDs turn out to be
very similar. For this reason, we give derivations and proofs for problems defined in terms of
RCFDs only, and we give only the theorems and the results without any derivations or proof
for problems defined in terms of RFDs.

We now derive the GELEs for a simple fractional variational problem defined in terms of
an RCFD.
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3. Euler–Lagrange equation for a simple fractional variational problem

A simple FVP in terms of an RCFD can be defined as follows: among all functions x(t) which
satisfy the boundary conditions

x(a) = xa and x(b) = xb (22)

find the function for which the functional

J [x] =
∫ b

a

F
(
t, x, RC

a Dα
b x

)
dt (23)

is an extremum, where 0 < α < 1. We also assume that functions are smooth and all
differentiability conditions are met.

To obtain the necessary conditions for the extremum, assume that x∗(t) is the desired
function. Let ε ∈ R, and define a family of curves

x(t) = x∗(t) + εη(t), (24)

where η(t) is an arbitrary curve except that it satisfies the boundary conditions, i.e. we require
that

η(a) = η(b) = 0. (25)

To obtain the Euler–Lagrange equation, we substitute equation (24) into equation (23),
differentiate the resulting equation with respect to ε and set the result to 0. This leads to
the following condition for extremum:∫ b

a

[
∂F

∂x
η +

∂F

∂RC
a Dα

b x

RC
a Dα

b η

]
dt = 0. (26)

Using equation (20), equation (26) can be written as∫ b

a

[
∂F

∂x
− R

a Dα
b

∂F

∂RC
a Dα

b x

]
η dt + R

a Dα−1
b

(
∂F

∂RC
a Dα

b x

)
η(t)|ba = 0. (27)

Using equation (25), it follows that the last two terms of equation (27) are 0. Since η(t) is
arbitrary, it follows from a well established result in calculus of variations that [35]

∂F

∂x
− R

a Dα
b

∂F

∂RC
a Dα

b x
= 0. (28)

Equation (28) is the generalized Euler–Lagrange equation for the FCV problem defined in
terms of the RCFD. Note that both the RFD and the RCFD automatically appear in the resulting
differential equations even when the functional contains only the RCFD.

Following the above derivation, we can state the following theorem:

Theorem 1. Let J [x] be a functional of the form∫ b

a

F
(
t, x, RC

a Dα
b x

)
dt, (29)

defined on the set of functions x(t) which have continuous Riesz–Caputo fractional derivative
of order α in [a, b] and which satisfy the boundary conditions x(a) = xa and x(b) = xb.
Then a necessary condition for J [x] to have an extremum for a given function x(t) is that x(t)

satisfy the following generalized Euler–Lagrange equation:

∂F

∂x
− R

a Dα
b

∂F

∂RC
a Dα

b x
= 0, (30)
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Function F in equation (23) can be thought of as a function containing both the left and
the right CFDs for which the GELE is given as [19]

∂F

∂x
+ tD

α
b

∂F

∂C
a Dα

t x
+ aD

α
t

∂F

∂C
t Dα

b x
= 0. (31)

Equation (30) can also be obtained by using equations (14), (15) and (31). For α = 1, the
Euler–Lagrange equation is given as

∂F

∂x
− d

dt

∂F

∂ẋ
= 0. (32)

Equations (30), (31) (and its equivalent in terms of RLFD) and (32) are similar and they all
contain both forward and backward derivatives. Note that −d/dt is essentially a backward
derivative. Thus, backward derivatives in equations (30) and (31) appear explicitly, whereas
they appear in equation (32) in a disguise form.

For F = F
(
t, x, R

a Dα
b x

)
and F = F

(
t, x, RC

a Dα
b x, R

a Dα
b x

)
, the corresponding Euler–

Lagrange equations are given as

∂F

∂x
− RC

a Dα
b

∂F

∂R
a Dα

b x
= 0 (33)

and
∂F

∂x
− R

a Dα
b

∂F

∂RC
a Dα

b x
− RC

a Dα
b

∂F

∂R
a Dα

b x
= 0, (34)

respectively. The derivations of these equations are omitted as they are similar to those of
equation (28).

In the next section, we consider the case where a boundary condition may not be specified.

4. A simple variable end-point problem

We now consider a simple variable end-point problem in FCV which can be defined as follows:
among all possible curves whose end points lie on two given vertical lines t = a and t = b,
find the curve for which the functional defined in equation (23) has an extremum.

To obtain the necessary conditions for this problem, we follow the approach discussed
in section 2 and arrive at equation (27). Since η(t) is arbitrary, we first select η(t) such
that η(a) = η(b) = 0. Using this condition and equation (27), we arrive at equation (28).
Substituting equation (28) into equation (27), we obtain

R
a Dα−1

b

(
∂F

∂RC
a Dα

b x

)
η(t)|ba = 0. (35)

Equation (35) suggests that at t = a either η(a) should be zero (i.e. x(a) should be specified)
or the following condition must be met:

R
a Dα−1

b

(
∂F

∂RC
a Dα

b x

) ∣∣∣∣
t=a

= 0. (36)

A similar condition holds at t = b. Conditions x(a) = xa and x(b) = xb are known as the
geometric boundary conditions (GBC), and equation (36) and its equivalent for point t = b

are called the generalized natural boundary conditions (GNBCs). Thus, the solution of the
variable end-point problem must satisfy the GELE (28) and either the GBCs or the GNBCs at
both ends. Equation (35) also suggests that both the GBCs and the GNBCs cannot be specified
at the same end point, otherwise, the problem will be inconsistent. Equation (35) may contain
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fractional derivative terms. Therefore, solution of a fractional differential equation (FDE)
resulting from FCV may require fractional boundary conditions.

Following the above approach, it can be shown that if F = F
(
t, x, R

a Dα
b x

)
, equation (35)

is replaced with(
∂F

∂R
a Dα

b x

)
R
a Dα−1

b η(t)|ba = 0. (37)

Thus, in this case both the GBC and the GNBC may contain fractional derivative terms. If
F = F

(
t, x, RC

a Dα
b x, R

a Dα
b x

)
, then equation (35) is replaced with[

R
a Dα−1

b

(
∂F

∂RC
a Dα

b x

)
η(t) −

(
∂F

∂R
a Dα

b x

)
R
a Dα−1

b η(t)

] ∣∣∣∣
b

a

= 0. (38)

In this case, the GBCs and the GNBCs are not simple. For this reason, we will not consider
a function F which contains both derivatives, RC

a Dα
b x and R

a Dα
b x. However, if necessary, the

formulations presented here can be extended to the case where F = F
(
t, x, RC

a Dα
b x, R

a Dα
b x

)
.

The above formulations consider only one RCFD. The problem of finding extremum of a
functional consisting of multiple Riesz fractional derivatives of order less than or equal to 1
and mixed boundary conditions can be developed using the discussion presented in this section
and the previous one. This leads to

Theorem 2. Assume that 0 < α1, . . . , αm < 1. Let J [x] be a functional of the form∫ b

a

F
(
t, x, RC

a D
α1
b x, . . . , RC

a D
αm

b x
)

dt, (39)

defined on the set of functions x(t) which have continuous first and second partial derivatives
with respect to all its arguments in [a, b]. Then a necessary condition for J [x] to have an
extremum x(t) is that x(t) satisfy the generalized Euler–Lagrange equation

∂F

∂x
−

m∑
i=1

R
a D

αi

b

∂F

∂RC
a D

αi

b x
= 0, (40)

either x(a) = xa or
m∑

i=1

R
a D

αi−1
b

(
∂F

∂RC
a D

αi

b x

) ∣∣∣∣
t=a

= 0, (41)

and either x(b) = xb or
m∑

i=1

R
a D

αi−1
b

(
∂F

∂RC
a D

αi

b x

) ∣∣∣∣
t=b

= 0. (42)

Equations (40)–(42) can be derived using the approach discussed in this and in the previous
section. In the case of F = F

(
t, x, R

a D
α1
b x, . . . , R

a D
αm

b x
)
, equations (40)–(42) take the

following form:

∂F

∂x
−

m∑
i=1

RC
a D

αi

b

∂F

∂R
a D

αi

b x
= 0, (43)

m∑
i=1

R
a D

αi−1
b η(t)

(
∂F

∂RC
a D

αi

b x

) ∣∣∣∣
t=a

= 0 (44)
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and
m∑

i=1

R
a D

αi−1
b η(t)

(
∂F

∂RC
a D

αi

b x

) ∣∣∣∣
t=b

= 0. (45)

Here η(t) is an arbitrary function consistent with boundary conditions. Note that in this case
separating the GBCs and the GNBCs is not clear.

We now give further generalization of theorems 1 and 2.

5. The cases of multiple functions and multiple α’s greater than 1

The forgoing derivations can be generalized for the cases of multiple functions and multiple
αj , j = 1, . . . , where at least one of the α’s is greater than 1. To simplify the presentation,
we consider the following two cases in which the first case has n functions, n > 1, and only
one α, 0 < α < 1, and the second case has only one function and one α greater than 1. In
both cases, we assume that the locations of the end points are fixed, and some functions and
their fractional derivatives are either specified or free (unknown). A formulation in which the
functional contains multiple functions and multiple derivatives of arbitrary order and mixed
boundary conditions can be developed following the approach presented here. A more general
case, where the end points are free would be presented elsewhere.

Case 1. Multiple functions, one α, 0 < α < 1, and mixed boundary conditions
The fractional variational problems discussed in the previous sections can be extended

in a straightforward manner to problems where the functionals have more than one RCFD or
more than one RFD. We first consider the problem in which F contains xj (t), j = 1, . . . , n,
and its RCFDs only. To define a problem for this case, consider an integer n > 1, and a set Sn

consisting of integers from 1 to n. Consider four additional subsets SL, SR, S̄L and S̄R where
SL and SR consist of some of the integer numbers between 0 and n + 1, S̄L = Sn − SL and
S̄R = Sn − SR . Some of these sets could be empty. For example, assume that we have three
functions, x1(t), x2(t) and x3(t). Assume that x2 is defined at a and all three x’s are defined at b.
In this case, the above sets are given as Sn = {1, 2, 3}, SL = {2}, SR = {1, 2, 3}, S̄L = {1, 3}
and S̄R = ∅, where ∅ is the empty set. The problem can now be defined as follows: let
F(t, x1, . . . , xn, z1, . . . , zn) be a function with continuous first and second (partial) derivatives
with respect to all its arguments. For 0 < α < 1, consider the problem of finding necessary
conditions for an extremum of a functional of the form∫ b

a

F
(
t, x1, . . . , xn,

RC
a Dα

b x1, . . . ,
RC
a Dα

b xn

)
dt, (46)

which depends on n continuously differentiable functions x1(t), . . . , xn(t) satisfying the
boundary conditions

xj (a) = xja, j ∈ SL, (47)

xj (b) = xjb, j ∈ SR. (48)

Note that all functions xj (t), j = 1, . . . , n, are independent. Therefore, the necessary
condition for the functional in equation (46) to have an extremum can be found by considering
the variations of each function one at a time. Thus, we have

Theorem 3. A necessary condition for the curve xj = xj (t), j = 1, . . . , n, which satisfies the
boundary conditions given by equations (47) and (48) to be extremal of the functional given by
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equation (46) is that the functions xj = xj (t), j = 1, . . . , n, satisfy the following generalized
Euler–Lagrange equations:

∂F

∂xj

− R
a Dα

b

∂F

∂RC
a Dα

b xj

= 0, j = 1, . . . , n, (49)

and the following generalized natural boundary conditions:

R
a Dα−1

b

(
∂F

∂RC
a Dα

b xj

) ∣∣∣∣
t=a

= 0, j ∈ S̄L (50)

R
a Dα−1

b

(
∂F

∂RC
a Dα

b xj

) ∣∣∣∣
t=b

= 0, j ∈ S̄R. (51)

If F in equation (46) is given as F = F
(
t, x1, . . . , xn,

R
a Dα

b x1, . . . ,
R
a Dα

b xn

)
, then the necessary

conditions equivalent to equations (49)–(51) are given as

∂F

∂xj

− RC
a Dα

b

∂F

∂R
a Dα

b xj

= 0, j = 1, . . . , n, (52)

R
a Dα−1

b ηj (t)

(
∂F

∂R
a Dα

b xj

) ∣∣∣∣
t=a

= 0, j ∈ S̄L (53)

R
a Dα−1

b ηj (t)

(
∂F

∂R
a Dα

b xj

) ∣∣∣∣
t=b

= 0, j ∈ S̄R. (54)

If F = F
(
t, x1, . . . , xn,

RC
a Dα

b x1, . . . ,
RC
a Dα

b xn

)
, then the GBCs do not contain fractional

derivative terms, and if F = F
(
t, x1, . . . , xn,

R
a Dα

b x1, . . . ,
R
a Dα

b xn

)
, then both the GBCs and

the GNBCs may contain fractional derivative terms.
We now consider the case of higher order derivatives.

Case 2. One function and its derivatives of order α > 1, and mixed boundary conditions
Now consider the case where the functional contains an RCFD of order α > 1. Let n be

an integer such that n − 1 < α < n. This time, define sets Sn, SL, SR, S̄L and S̄R as follows:
Sn = {0, . . . , n − 1}. If x(j)(a) is specified then j ∈ SL, otherwise j ∈ S̄L. Similarly, if
x(j)(b) is specified then j ∈ SR , otherwise j ∈ S̄R . We further assume that F(t, x, z) is a
function with continuous first and second (partial) derivatives with respect to all its arguments,
and consider a functional of the form

J [x] =
∫ b

a

F
(
t, x, RC

a Dα
b x

)
dt. (55)

The problem can now be defined as follows: among all functions x(t) satisfying the conditions

x(j)(a) = xaj , j ∈ SL (56)

x(j)(b) = xbj , j ∈ SR, (57)

find the function for which functional J [x] defined by (55) has an extremum.
To find the necessary conditions for this problem, we define x(t) as in equation (24),

substitute it into equation (55), differentiate the resulting equations with respect to ε and set
it to 0, and use equation (20) to eliminate terms containing fractional derivatives of η(t).
We further impose the condition that η(t) is arbitrary, and Djη(a) (Djη(b)) is arbitrary if
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Djx(a) (Djx(b)) is not specified, and therefore their coefficients must be 0. This leads to the
following theorem:

Theorem 4. Let J [x] be a functional of the form given by equation (55) defined on the set
of functions satisfying the boundary conditions given by equations (56) and (57). Then a
necessary condition for J [x] to have an extremum for a given function x(t) is that x(t) satisfy
the generalized Euler–Lagrange equation

∂F

∂x
+ (−1)n R

a Dα
b

∂F

∂RC
a Dα

b x
= 0 (58)

and the generalized natural boundary conditions

R
a D

α+j−n

b

(
∂F

∂RC
a Dα

b x

) ∣∣∣∣
t=a

= 0, (n − 1 − j) ∈ S̄L (59)

R
a D

α+j−n

b

(
∂F

∂RC
a Dα

b x

) ∣∣∣∣
t=b

= 0, (n − 1 − j) ∈ S̄R. (60)

In the case of F = F
(
t, x, R

a Dα
b x

)
, 0 < n−1 < α < n, the necessary conditions for extremum

are given as

∂F

∂x
+ (−1)n RC

a Dα
b

∂F

∂R
a Dα

b x
= 0. (61)

(
∂F

∂RC
a Dα

b x

) ∣∣∣∣
t=a

= 0, (n − 1 − j) ∈ S̄L (62)

(
∂F

∂RC
a Dα

b x

) ∣∣∣∣
t=b

= 0, (n − 1 − j) ∈ S̄R. (63)

In addition R
a D

α+j−n

b x(a), n − j ∈ SL and R
a D

α+j−n

b x(b), n − j ∈ SR must be specified. Note
that once again the GBC in this case contains fractional derivative terms.

In the discussion so far, we considered all functions independent. In the next section, we
consider the situation where the functions may be subjected to additional constraints.

6. The problem of Lagrange and the multiplier rule

In this section, we consider the problem of finding extremum of a functional defined in terms of
several functions, not all of which are independent. When the functional and the constraints do
not contain any fractional derivative term, the problem is known as the problem of Lagrange.
In our case, functional and/or constraints will contain fractional derivative terms. For this
reason, we will call such problems the problems of Lagrange containing fractional derivatives,
or simply fractional Lagrange problems. The constraints among the functions can be of two
types. When the constraints among the functions are described using some algebraic relations,
we call them the geometric constraints, and when the relationships among the functions are
described using FDEs, we call them the dynamic constraints. In this section, we first consider
geometric constraints only and then dynamic constraints only. The case of mixed constraints
is omitted. However, the formulation for mixed set of constraints could be obtained using the
two cases presented below.
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Case 1: Geometric constraints only
In this section, we consider the fractional Lagrange problem subjected to geometric

constraints only. The problem can be defined as follows: find the extremum of the functional∫ b

a

F
(
t, x1, . . . , xn,

RC
a Dα

b x1, . . . ,
RC
a Dα

b xn

)
dt, (64)

such that

φi(t, x1, . . . , xn) = 0, i = 1, . . . , m < n (65)

and the boundary conditions

xs1(j)(a) = xs1(j)a, nI1 � n − m (66)

and

xs2(j)(b) = xs2(j)b, i = 1, . . . , nI2 � n − m (67)

where s1 and s2 are two sets containing n numbers from 1 to n which have been reordered, sk(j)

represents the jth element of set sk, xs1(j)a and xs1(j)b, j = 1, . . . , are the terminal conditions,
and nI1 and nI2 are the numbers of terminal conditions at the two ends, respectively. We
assume that the constraint functions φi(t, x1, . . . , xn) = 0, i = 1, . . . , m, are all independent.
Note the following: (1) the order of elements in sets s1 and s2 is not important, except that the
first nI1 numbers in s1 and the first nI2 numbers in s2 represent the numbers associated with
the specified terminal conditions; (2) the numbers associated with the terminal conditions at
the two ends need not be the same, and nI1 need not be equal to nI2; (3) both nI1 and nI2

must be less than or equal to n − m. Otherwise either some of the terminal conditions would
be redundant or they would be inconsistent with the constraints and (4) if either nI1 < n − m

or nI2 < n − m, the formulation leads to some GNBCs. For simplicity in the discussion
to follow, we assume that nI1 = nI2 = n − m. Since φi(t, x1, . . . , xn) = 0, i = 1, . . . , m,
are independent, we can use equations (65)–(67) and a nonlinear solver such as the Newton–
Raphson method to determine all functions at the end points. In the discussion to follow, we
assume that all functions at the end points have been determined.

To develop the necessary conditions for the problem, assume that x∗
j (t), j = 1, . . . , n,

are the solutions to the above problem, and define

xj (t) = x∗
j (t) + εηj (t), j = 1, . . . , n, (68)

where ε is a sufficiently small number, and ηj (t), j = 1, . . . , n, are functions consistent with
the constraints, i.e. xj (t), j = 1, . . . , n, satisfy equation (65). Out of n functions ηj (t), n − m

functions are independent. We assume that the first n − m functions ηj (t) are independent.
Note that at the solution point, ε = 0. From the above discussion, it follows that

ηj (a) = ηj (b) = 0, j = 1, . . . , n. (69)

Substituting equation (69) into equations (64) and (65) and differentiating them with respect
to ε, setting ε and the resulting equations to 0, and using equations (20) and (69), we obtain∫ b

a

n∑
j=1

[
∂F

∂xj

− R
a Dα

b

∂F

∂RC
a Dα

b xj

]
ηj dt = 0 (70)

and
n∑

j=1

∂φi

∂xj

ηj = 0, i = 1, . . . , m. (71)
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Now, using the Lagrange multiplier technique, we obtain

∂F

∂xj

− R
a Dα

b

∂F

∂RC
a Dα

b xj

+
m∑

i=1

λi

∂φi

∂xj

= 0, j = 1, . . . , n, (72)

where λi, i = 1, . . . , m, are the Lagrange multipliers.

Definition. A set of admissible functions xj (t), j = 1, . . . , m, are said to satisfy the multiplier
rule if there exist multipliers λi(t), i = 1, . . . , m on [a, b] and a function

F̄ = F +
m∑

i=1

λiφi (73)

such that
∂F̄

∂xj

− R
a Dα

b

∂F̄

∂RC
a Dα

b xj

= 0, j = 1, . . . , n, (74)

is satisfied along xj (t), j = 1, . . . , n.

Theorem 5. Every minimizing set of functions xj (t), j = 1, . . . , n, must satisfy the multiplier
rule.

To prove this, substitute equation (73) into equation (74) and show that it leads to
equation (72).

We now consider the dynamic constraints.

Case 2: Dynamic constraints only
In the case of dynamic constraints, equation (65) also contains fractional derivative terms.

Here, we shall consider dynamic constraints which are linear in fractional derivative terms.
Specifically, we will consider the dynamic constraints of the following form:

φi

(
t, x1, . . . , xn,

RC
a Dα

b xk

) = φ̄i(t, x1, . . . , xn) − RC
a Dα

b xk = 0, i = 1, . . . , m < n,

(75)

where k ∈ {1, . . . , n}. Further, one k occurs only once in equation (75). Such equations arise
when the dynamics of a fractional system is given in a state-space form.

The multiplier rule discussed above is also applicable to the dynamic constraints
considered here. This can be proved following the discussion given above and in [36, 37].
The necessary conditions for such type of problems defined using other type of fractional
derivatives could be found in [26, 28, 29]. The necessary conditions for a system containing
multiple fractional derivatives can be developed in a similar manner.

We now discuss the canonical form namely the Hamiltonian formulation of the Euler–
Lagrange equations. Fractional Lagrangians and Hamiltonians have been recently considered
in [21, 24]. However, they formulate the problems in terms of RLFDs and CFDs. In contrast,
we present the formulation in terms of RCFDs. Once again, we omit the formulation in terms
of RFDs as they can be derived in a similar manner.

7. The canonical form of the Euler–Lagrange equations

Let us now return to equation (49), which could be thought of as a system of 2n FDEs in terms
of 2n functions x1, . . . , xn,

RC
a Dα

b x1, . . . ,
RC
a Dα

b xn. To obtain a symmetrical and convenient
form of these equations, define

pj = ∂F

∂RC
a Dα

b xj

, j = 1, . . . , n (76)
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and write RC
a Dα

b x1, . . . ,
RC
a Dα

b xn as functions of the variables t, x1, . . . , xn, p1, . . . , pn. This
requires that the Jacobian

∂p1, . . . , pn

∂RC
a Dα

b x1, · · · , RC
a Dα

b xn

= det

∥∥∥∥ ∂2F

∂RC
a Dα

b xj ∂RC
a Dα

b xk

∥∥∥∥ (77)

be nonzero [35]. We assume that this condition is satisfied. In [35] it is stated that equation (77)
guarantees only the local solvability of equation (76) with respect to RC

a Dα
b x1, . . . ,

RC
a Dα

b xn,
but it does not guarantee the possibility of representing RC

a Dα
b x1, . . . ,

RC
a Dα

b xn as functions
of t, x1, . . . , xn, p1, . . . , pn, which are defined over the whole region under discussion.
Therefore, the above considerations have local character. Since we have assumed that F
and its partial derivatives with respect to its arguments are sufficiently smooth, we can assume
that this representation is valid over the whole region under consideration.

We now express F
(
t, x1, . . . , xn,

RC
a Dα

b x1, . . . ,
RC
a Dα

b xn

)
in terms of a new function

H(t, x1, . . . , xn, p1, . . . , pn) related to F by the formula

H = −F +
n∑

j=1

pj
RC
a Dα

b xj . (78)

When α = 1, the function H is called the Hamiltonian, and the new variables t, x1, . . . , xn,

p1, . . . , pn,H are called the canonical variables. Because of their close similarity, we call H
the fractional Hamiltonian, and the new variables t, x1, . . . , xn, p1, . . . , pn,H the fractional
canonical variables. In physics, variables p1, . . . , pn are also known as the generalized
momenta.

We now show how the Euler–Lagrange equations (49) transform when we go over to
fractional canonical variables. To accomplish this, we proceed as follows. By the definition
of H, we have

dH = −∂F

∂t
dt −

n∑
j=1

(
∂F

∂xj

dxj +
∂F

∂RC
a Dα

b xj

dRC
a Dα

b xj

)

+
n∑

j=1

(
dpj

RC
a Dα

b xj + pj dRC
a Dα

b xj

)
. (79)

Using equation (76), this reduces to

dH = −∂F

∂t
dt +

n∑
j=1

(
− ∂F

∂xj

dxj + dpj
RC
a Dα

b xj

)
. (80)

This suggests that H is a function of t, x1, . . . , xn, p1, . . . , pn only. Therefore, we can write

dH = ∂H

∂t
dt +

n∑
j=1

(
∂H

∂xj

dxj +
∂H

∂pj

dpj

)
. (81)

Comparing equations (80) and (81), and using equations (49) and (76), we obtain

R
a Dα

b pj = −∂H

∂xj

, RC
a Dα

b xj = ∂H

∂pj

, j = 1, . . . , n (82)

and
∂H

∂t
= −∂F

∂t
. (83)

Equations (82) represent 2n FDEs of order α for the system which is equivalent to the system
(49). Because of their similarity with the canonical Euler equations for integer order systems,
we call equations (82) the fractional canonical system of Euler equations or simply the
fractional canonical Euler equations.
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8. Variational problems involving multiple integrals

In the discussion so far, functions xj (t) were defined over one-dimensional space. In this
section, we consider the problem of finding an extremum of a functional of functions defined
over a multi-dimensional space. Such problems arise in field theories where the space and the
time dimensions are considered simultaneously. For simplicity in the discussion to follow, we
consider a functional which depends only on one function and its partial fractional derivatives.
We assume that the function is defined over a two-dimensional rectangular domain, and the
boundaries of the domain are fixed.

The variational problem involving multiple integrals can now be defined in the following
way: among all functions x(t, z) which satisfy the boundary conditions{

x(a1, z) = xa1(z), x(b1, z) = xb1(z),

x(t, a2) = xa2(t), x(t, b2) = xb2(t),
(84)

find the function for which the functional

J [x] =
∫ b2

a2

∫ b1

a1
F

(
t, z, x, RC

a1 Dα
b1x, RC

a2 D
β

b2x
)

dt dz (85)

is an extremum, where 0 < α, β < 1. Here, RC
a1 Dα

b1x and RC
a2 D

β

b2x are the Riesz–Caputo partial
fractional derivatives of x of order α with respect to t and of order β with respect to z. The
necessary conditions for this problem can be found using the approach presented in section 3.
The result is:

Theorem 6. Let J [x] be a functional of the form given by equation (85) and defined on a
set of functions x(t, z) which have continuous Riesz–Caputo partial fractional derivatives of
order α with respect to t and of order β with respect to z in [a1, b1] × [a2, b2] and which
satisfy the boundary conditions given by equation (84). Then a necessary condition for J [x]
to have an extremum for a given function x(t, z) is that x(t, z) satisfy the following generalized
Euler–Lagrange equation

∂F

∂x
− R

a1D
α
b1

∂F

∂RC
a1 Dα

b1x
− R

a2D
β

b2

∂F

∂RC
a2 D

β

b2x
= 0. (86)

where R
a1D

α
b1[∗] and R

a2D
β

b2[∗] are the Riesz partial fractional derivative of order α with respect
to t and of order β with respect to z.

As an application of the above formulation, assume that F considered in equation (85)
represents the Lagrangian density function, and define the generalized momenta as

pα = ∂F

∂RC
a1 Dα

b1x
, pβ = ∂F

∂RC
a2 D

β

b2x
. (87)

Following the approach presented in section 7, we can define the fractional Hamiltonian
density function as

H = −F + pα
RC
a1 Dα

b1x + pβ
RC
a2 D

β

b2x (88)

Using the formulation presented in section 7, it can be demonstrated that for this case the
fractional canonical Euler field equations (or the Hamilton field equations) are

RC
a1 Dα

b1x = ∂H

∂pα

, RC
a2 D

β

b2x = ∂H

∂pβ

, (89)
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and

R
a1D

α
b1pα + R

a2D
β

b2pβ = −∂H

∂x
,

∂H

∂t
= −∂F

∂t
. (90)

Fractional field equations have been considered in [38], where formulations have been
presented for the fractional Dirac field and the fractional Schrödinger equation. However,
these formulations were done in terms of RLFDs.

Note that all theorems developed above for one-dimensional case can be extended for
multi-dimensional cases. They are omitted since they follow the steps given in the previous
sections.

9. Fractional optimal control formulation

As an additional application of the formulation presented in the previous sections, consider the
following fractional optimal control of a time-invariant problem: find the control u(t) which
minimizes the quadratic performance index

J (u) = 1

2

∫ 1

0
[x2(t) + u2(t)] dt (91)

subjected to the system dynamics
RC
0 Dα

1 x(t) = −x(t) + u(t), (92)

and the initial condition

x(0) = 1. (93)

For this example, we define (see equation (73))

F̄ = 1
2 (x2 + u2) + λ

( − x + u − RC
0 Dα

1 x
)
. (94)

Using equation (74), we obtain the control equations as


RC
0 Dα

1 x = −x + u,

λ + u = 0,
R
0 Dα

1 λ = −x + λ,

(95)

The above problem has been considered by the author in several papers where different
formulations and different numerical schemes of the problem have been presented [19, 26,
28, 29]. The Euler–Lagrange equations developed here can be used to find fractional optimal
control of time-varying system considered in these papers.

As an additional remark, it should be pointed out that finding closed-form solutions of
the equations derived above is generally difficult, so a numerical technique may be necessary.
This will be considered in the future.

10. Conclusions

Generalized Euler–Lagrange equations and the generalized natural boundary conditions have
been presented for fractional variational problems defined in terms of Riesz and Riesz–
Caputo fractional derivatives. Problems involving multiple functions, fractional derivatives
of different orders, geometric and dynamic constraints, and multi-dimensional domains
were considered. The formulations were applied to develop fractional momenta, fractional
Hamiltonian, fractional Hamilton equations of motion, fractional field theory, and fractional
optimal control. It is suggested that finding closed form solutions to these problems is difficult.
Therefore, numerical techniques may be necessary to solve the resulting equations.



Fractional variational calculus in terms of Riesz fractional derivatives 6303

References

[1] Agrawal O P 2002 J. Math. Anal. Appl. 272 368–79
[2] Agrawal O P 2006 J. Phys. A: Math. Gen. 39 10375–84
[3] Carpinteri A and Mainardi F 1997 Fractals and Fractional Calculus in Continuum Mechanics (Berlin: Springer)
[4] Podlubny I 1999 Fractional Differential Equations (New York: Academic)
[5] Hilfer E (ed) 2000 Applications of Fractional Calculus in Physics (Singapore: World Scientific)
[6] Metzler R and Klafter J 2000 Phys. Rep. 339 1–77
[7] Tenreiro-Machado J A (ed) 2002 Special Issue of Fractional Order Calculus and its Applications, Nonlinear

Dynamics (Berlin: Springer)
[8] Agrawal O P, Tenreiro-Machado J A and Sabatier J (ed) 2004 Fractional Derivatives and their Application:

Nonlinear Dynamics vol 38 (Berlin: Springer)
[9] Metzler R and Klafter J 2004 J. Phys A: Math. Gen. 37 R161–208

[10] Magin R L 2006 Fractional Calculus in Bioengineering (Redding, CT: Begell House Publisher)
[11] Riewe F 1996 Phys. Rev. E 53 1890–9
[12] Riewe F 1997 Phys. Rev. E 55 3582–92
[13] Agrawal O P 2001 J. Appl. Mech. 68 339–41
[14] Klimek M 2001 Czech. J. Phys. 51 1348–54
[15] Klimek M 2001 J. Phys A: Math. Gen. 35 6675–93
[16] Dreisigmeyer D W and Young P M 2003 J. Phys. A: Math. Gen. 36 8297–310
[17] Dreisigmeyer D W and Young P M 2004 J. Phys. A: Math. Gen. 37 L117–21
[18] Cresson J 2007 J. Math. Phys. 48 033504
[19] Agrawal O P 2007 J. Vib. Con. at press
[20] Baleanu D and Avkar T 2004 Nuovo Cimento Della Societa Italiana Di Fisica B—Gen. Phys. Rel. Astron. Math.

Phys. Methods 119 73–9
[21] Muslih S I and Baleanu D 2005 J. Math. Anal. Appl. 304 599–606
[22] Muslih S I and Baleanu D 2005 Czech. J. Phys. 55 633–42
[23] Baleanu D and Agrawal O P 2006 Czechoslovak J. Phys. 56 1087–92
[24] Rabei E M, Nawafleh K I, Hijjawi R S, Muslih S I and Baleanu D 2007 J. Math. Anal. Appl. 327 891–7
[25] Baleanu D, Muslih S I and Tas K 2006 J. Math. Phys. 47
[26] Agrawal O P 2004 Nonlinear Dyn. 38 323–37
[27] Agrawal O P 2005 Fractional Differentiation and its Applications ed A Le Mehaute, J A T Machado,

J C Trigeassou and J Sabatier pp 615–24
[28] Agrawal O P 2007 Proc. IFAC06 (Porto, Portugal)
[29] Agrawal O P and Baleanu D 2007 J. Vib. Con. at press
[30] Tarasov V E and Zaslavsky G M 2005 Phys. A: Stat. Mech. Appl. 354 249–61
[31] Tarasov V E and Zaslavsky G M 2006 J. Phys. A: Math. Gen. 39 9797–815
[32] Stanislavsky A A 2006 Eur. Phys. J. B 49 93–101
[33] Atanackovic T M, Oparnica L and Pihpovic S 2007 J. Math. Anal. Appl. 328 590–608
[34] Samko S G, Kilbas A A and Maritchev O I 1993 Fractional Integrals and Derivatives: Theory and Applications

(London: Gordon and Breach)
[35] Gelfand I M and Fomin S V 1963 Calculus of Variations (Englewood Cliffs, NJ: Prentice-Hall)
[36] Bliss G A 1963 Lectures on the Calculus of Variations (Chicage, IL: University of Chicago Press)
[37] Agrawal O P, Gregory J and Spector K P 1997 J. Math. Anal. Appl. 210 702–11
[38] Muslih S I, Baleanu D and Rabei E 2006 Phys. Scr. 73 436–38

http://dx.doi.org/10.1016/S0022-247X(02)00180-4
http://dx.doi.org/10.1088/0305-4470/39/33/008
http://dx.doi.org/10.1016/S0370-1573(00)00070-3
http://dx.doi.org/10.1088/0305-4470/37/31/R01
http://dx.doi.org/10.1103/PhysRevE.53.1890
http://dx.doi.org/10.1103/PhysRevE.55.3581
http://dx.doi.org/10.1115/1.1352017
http://dx.doi.org/10.1023/A:1013378221617
http://dx.doi.org/10.1088/0305-4470/36/30/307
http://dx.doi.org/10.1088/0305-4470/37/11/L01
http://dx.doi.org/10.1063/1.2483292
http://dx.doi.org/10.1016/j.jmaa.2004.09.043
http://dx.doi.org/10.1016/j.jmaa.2006.04.076
http://dx.doi.org/10.1140/epjb/e2006-00023-3
http://dx.doi.org/10.1016/j.jmaa.2006.05.038
http://dx.doi.org/10.1006/jmaa.1997.5427
http://dx.doi.org/10.1088/0031-8949/73/5/003

	1. Introduction
	2. Fractional integrals and derivatives and their properties
	3. Euler--Lagrange equation for a simple fractional variational problem
	4. A simple variable end-point problem
	5. The cases of multiple functions and multiple 's greater than 1
	6. The problem of Lagrange and the multiplier rule
	7. The canonical form of the Euler--Lagrange equations
	8. Variational problems involving multiple integrals
	9. Fractional optimal control formulation
	10. Conclusions
	References

